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An efficient iteration technique is suggested to solve the problem of  selecting the thicknesses of  a mul- 
tilayer construction subjected to radiative-convective fluxes fi'om the condition providing prescribed 
temperatures at controlled points.  

In [1, 2], a new approach was formulated for the implementation of iteration processes of solving ra- 
diative gasdynamics problems characterized by the need for carrying out a great number of complicated calcu- 
lations of the same type. Essentially, this approach consists in implementing a double-contour iteration scheme, 
in the inner contour of which a great number of calculations of the same type are carried out for a radically 
simplified analog of the initial formulation of  the problem. In the outer contour, the approximate algorithm is 
corrected based on the solution of  the problem in a rigorous formulation. 

As the long-standing experience of  using the double-contour algorithm for solving a wide spectrum of 
physicomathematical problems at the Scientific Production Association of Mechanical Engineering has shown, 
its use is always accompanied by a qualitative decrease in the laboriousness of solving the applied problems 
without any loss of accuracy. 

The present work illustrates the possibility of applying this approach to solving one kind of inverse 
heat conduction problems, namely, to determining the layer thicknesses of a one-dimensional multilayer con- 
struction (a construction packet) that correspond to the prescribed values of maximum permissible tempera- 
tures at some controlled points with the known therrnophysical properties of materials and laws of thermal 
loading of the packet. 

The first results of solving the indicated problem by this technique are published in [3]. However, the 
method used there for correction of  the approximate formulation of the problem in the inner contour is rather 
artificial although its use provides a stable solution of the problem set up. 

We suggest another, more natural approach to solution of the indicated problem. 
Consider the following design problem. Let the layer thicknesses of a construction packet subjected to 

the action of a high-temperature medium be determined from the condition providing the equality of the tem- 
peratures at the boundaries of the layers to the prescribed values: 

, :¢ r - ,  

q~i (hl,112 . . . . .  hm)= T i (h 1,h 2 . . . . .  h m ) -  Tl(i)=O, i= l , m  , l (i) E [0, n] ,  (1) 

where 

T7 = T (x i, ~*) = max T (xi, x). 

T~ lO,~l 

In this case, the temperature regime of  the construction is found from the solution of the tbllowing boundary- 
value problem: 

Scientific Production Association of  Mechanical Engineering, Reutov, Russia. Translated from Inzhe- 
nemo-Fizicheskii Zhurnal, Vol. 73, No. 1, pp. 155-159, January-February, 2000. Original article submitted De- 
cember 23, 1998. 

1062-0125/2000/7 301-0155 $25.00 02000 Kluwer Academic/Plenum Publishers 155 



PkCk(T)-~= ~.k(T) , Xk_l<X<Xk, 0<'I~<---~, k=l ,n ,  

T(x ,O)=T o, xo<x<-x ~, 

T(xk-O, ' t )=T(xk+O, ' t  ), k = l , n - l ,  x > O ,  

(2) 

(3) 

(4) 

~T (x t. - 0, I:) OT (x k + 0, x) 
~'k (T) ax - ~'~+1 (T) 3x , k = l, n - 1 , z > 0 .  (5) 

The boundary conditions on the surfaces w0 and w~ of the construction packet (CP) in the general case have 
the form 

aT (x o, I:) 
- ~-l (T)  a x  - qw ° (T)  (6)  

aT (x n, "c) 
~,n (T) 3x qw (T). (7) 

A solution of the tbrmulated problem is sought within the framework of the double-contour iteration 
algorithm. The problem of selecting the thicknesses is solved in the inner contour where use is made of a 
rought mathematical model that differs from (2)-(7) by employing fixed thermophysical characteristics for each 
layer of the packet. Furthermore, a solution of  the heating problem is sought here |or  a substantially smaller 
number of nodal values of the sought functions. This mathematical model is corrected in the outer contour on 
the basis of the solution of the initial fbrmulation of problem (2)-(7) for the layer thicknesses found in the 
inner contour. It must provide the identity of  temperatures at the nodes of the rough mathematical model tbund 
tbr the same thicknesses of the packet layers in the initial and simplified tbrmulations. 

The indicated problem can be solved by different methods. Thus, in [3], it has been solved by employ- 
ing, in the inner contour, maximum permissible temperatures differing from T;, which are calculated by a 
rather complicated algorithm. In the present work, this problem is solved in a more natural way: by introducing 
the additional correction function Q(Y, x) into an analog of Eq. (2) for the inner contour, by which we under- 
stand the discrepancy of the heat conduction equation solved in the inner contour for the function T(2)(~, "~) 
solved in the outer contour, i.e., Eq. (2) reduces to the form 

aT ~t a2T 
= , , + Q  (Y,x), (8) 

PY~ h Z bY" 

where 

x -xk-1 , k = 1, n', Q (~:, "c) = 13k~k ate2)- ~k a2T(2) (9) 

.t k, O~ h~ Ox 2 

In the outer contour, use is made of the mathematical model (2)-(7) that allows for the temperature 
dependence of thermophysical properties and of  a fine-mesh grid in solving the heating problem. 

The layer thicknesses satisfying the nonlinear equation (1) are sought by a modified Newton method. 
In this case, the tool of sensitivity functions is used to calculate partial derivatives of  the temperatures with 
respect to the thicknesses of varied layers at controlled nodes [4]. 
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Differentiating Eq. (8) with respect to the thickness of a varied layer, we arrive at a system of linear 
differential equations for the sensitivity functions cPhj, by which we understand the derivatives of the packet 
temperatures with respect to the thicknesses of the varied layers: 

" 7" O~Ph~i -~k 02T 28,i,k _ _ OT 
= ~ -  3 Pkc~-~ - '  j = l , m ;  k = l , n ,  

v~ck Ox 02 2 h k 

(10) 

where 

' , j ~ e k .  

Differentiating relations (6) and (7) with respect to the thickness of the varied layer I!i at fixed thermal 
conductivities ~,, we obtain the following boundary conditions for the sensitivity functions: 

-- ~1 0(ph~/ = qw0,T (T) iph d -- 2 - - "  J = 1, m ; 
02 h I ~a: 

( i1)  

~n = q w " ' r ( T ) % J -  hi ~2 '  j = l ' m "  (12) 

A search for a solution of the problem under consideration consists in executing the following se- 
quence of operations at each outer pth iteration: 

Step O. Choose the initial approximation h ° = {h~, h~ .. . . .  h °) and the parameters el and e_~. Assume 

that Q(y, x) = 0. 
Step 1. Determine the thicknesses of the varied layers hy ) from the system of linear algebraic equations 

t n  

*(t) , ,  (t} {pT(,} (13) 
IPh . i , j  L .VI j  = - -  , i = I, m ,  

j=l 

obtained by linearization of the system of  equations (1). 
For passing from the lth to the (l  + 1)th iteration, use is made of formulas of the type 

,,jh (t+l) =h)(l) + [31 AhJt) , j =  l , m ,  l = 1, 2 . . . . .  (14) 

where 

1 

max 1, --  max 

The iteration process in the inner contour is completed provided 

]CpT~Z) I • (15) z <e  1 , i =  1, m 

The functionals q~,(t) are calculated using the approximate mathematical model. 
Step 2. Calculation of the temperature field T(P)(x, z) using the mathematical model (2)-(7) and deter- 

mination of temperatures at the nodes of  the rough grid. 
Step 3. Checking of the condition of iteration completion 
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TABLE 1. Pro )erties of Materials 

No. of Dependence Averaged values 
material k ~,k(T) ct.(T) ~- -ct" 

3o-5~ 

(1+ :?+r2).o.oo5 
0.04 + 0.0IT + 0.03T- 

0.04 +0.1T 

1500 + 0.2T 

800 + 0.2T 

1800 - T + 400T 2 

-400 + 5T 

21 

0.1 

0.06 

0.45 

1900 

1000 

1300 

1400 

Density, Pk 

2100 

200 

100 

1800 

TABLE 2. Convergence of the Process 

Iteration 
No. lOOhl 

17.6 

20.5 

21.8 
22.3 

lOOh2 

12.3 

18.4 

19.7 
19.8 

100h3 

40.2 

39.6 

35.7 
35.1 

39 
16 

6 
2 

245 

50 

5 
0.45 

8 
-6 

1 
0.4 

z f 0;i 

292 

72 

12 
2.85 

ITT~P)-I"ICi)I<e2" i : l , m .  
(i6) 

If the condition is fulfilled, the thicknesses of the varied layers determined at step 1 can be assumed to 
be the final solution of the problem of synthesis, otherwise we pass to the following step. 

Step 4. Determination of the correction function (9) and passage to step I. 
Construction of numerical solutions both of the primal heat conduction problem and the problem on 

determination of the sensitivity functions is accomplished in the present work by using the implicit difference 

schemes for Eqs. (2) and (8) and the factorization method [5]. 
According to the algorithm described, we performed numerical calculations of  a number of  methodical 

problems differing in the choice of  the initial approximation and the structure of  construction packets and in 

the mode of thermal loading. 
As an illustration of the investigations performed, the solution for the model problem from [4] is given. 
It is required to select the thicknesses of  three layers nearest to the heated surface w0 of the CP so that 

the temperatures at the boundaries of  the layers are equal to the prescribed values: 

T j = 1 7 7 3  K ,  7"~_=1273 K ,  =343 K .  

The thermophysical properties of  layer materials are given in Table 1. 
The initial thicknesses of the varied layers are assumed to be: Ill = 5 mm, h2 = 5 mm, and h 3 = 10 

mm. The thickness of the tburth layer is fixed and equal to 3 mm. 
Heat fluxes on the boundary surfaces wo and wn of the CP are calculated by the tbllowing tbrmulas 

2 

qwo =0"03exp lO00 2J~-5"00" ) J(Hr'wo-Hwo)-EwooT4wo' 

where 

Hwo = 954Two + 0.08627 ̀ 2 
W o 

qw n = 15 (323 -Tw°) + ~w~ (3334 - T4w,). 
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The convergence of the iteration process in the outer contour is illustrated by the calculated results 
given in Table 2. 

An analysis of the above calculations shows the effectiveness of the double-contour algorithm, with the 
aid of which the solution of the inverse design problem is constructed with the required accuracy and with 
limited use of a rigorous mathematical model. 

N O T A T I O N  

T, temperature, K; ~p~, functional-discrepancy between the maximum temperature at the ith controlled 
node T/* and its maximum permissible value TT{i), K; i, number of limitation; l(i), number of the boundary of 
the construction packet at which the ith limitation holds; m, number of controlled temperatures (the number of 
varied thicknesses); n, number of layers in the CP; q~hj = 3T/~hj, sensitivity function; CPh,ij = CPh,i(Xi, ~), sensi- 
tivity function at the_xi-nodes; T {2), temperatures calculated in the outer contour, K; T0, initial temperature of 
the construction, K; T = T/1000; Q(~, "t:), correction function, W/m2; qwo, qw,,, densities of the heat fluxes sup- 
plied to the boundaries w0 and w,, of the C P, W/m2; c, specific heat, J/(kg.K); 5, averaged specific heat, 
J/(kg-K); ~,, thermal conductivity, W/(m-K); ~., averaged thermal conductivity, W/(m.K); p, material density, 
kg/m3; 13t, weight coefficient of the iteration process (0 < [3t< 1); A, maximum permissible relative change in 
the sought quantities (A = 0.2); h = (hi, h2 . . . .  hm), combination of varied layers, m; ew 0, ew,,, emissivity factors 
of the CP boundary surfaces; H~.,,~,, enthalpy of recovery of the gas flux on the boundary surface w 0 of the CP, 
J/kg; Hwo, gas enthalpy at the wall temperature, J/kg; "~, time, sec; ~, right-hand value of the time interval; "c*, 
time of attaining the maximum temperature at the controlled node; el, e2, requires accuracies of iteration pro- 
cesses in the inner and outer contours; l, p, current numbers of iteration in the inner and outer contours, respec- 
tively. The index on the thermophysical quantities indicates the number of  the material used (see Table 1) and 
coincides with the number of the CP layer. 
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